Phrase Translation Model Enhanced with Association based Features
نویسندگان
چکیده
In this paper, we propose to enhance the phrase translation model with association measures as new feature functions. These features are estimated on counts of phrase pair co-occurrence and their marginal counts. Four feature functions, namely, Dice coefficient, log-likelihood-ratio, hyper-geometric distribution and link probability are exploited and compared. Experimental results demonstrate that the performance of the phrase translation model can be improved by enhancing it with these association based feature functions. Moreover, we study the correlation between the features to predict the usefulness of a new association feature given the existing features.
منابع مشابه
A Generalized Reordering Model for Phrase-Based Statistical Machine Translation
Phrase-based translation models are widely studied in statistical machine translation (SMT). However, the existing phrase-based translation models either can not deal with non-contiguous phrases or reorder phrases only by the rules without an effective reordering model. In this paper, we propose a generalized reordering model (GREM) for phrase-based statistical machine translation, which is not...
متن کاملمدل ترجمه عبارت-مرزی با استفاده از برچسبهای کمعمق نحوی
Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...
متن کاملTree Kernel-based SVM with Structured Syntactic Knowledge for BTG-based Phrase Reordering
Structured syntactic knowledge is important for phrase reordering. This paper proposes using convolution tree kernel over source parse tree to model structured syntactic knowledge for BTG-based phrase reordering in the context of statistical machine translation. Our study reveals that the structured syntactic features over the source phrases are very effective for BTG constraint-based phrase re...
متن کاملLearning Bilingual Linguistic Reordering Model for Statistical Machine Translation
In this paper, we propose a method for learning reordering model for BTG-based statistical machine translation (SMT). The model focuses on linguistic features from bilingual phrases. Our method involves extracting reordering examples as well as features such as part-of-speech and word class from aligned parallel sentences. The features are classified with special considerations of phrase length...
متن کاملIntegrating Phrase-based Reordering Features into a Chart-based Decoder for Machine Translation
Hiero translation models have two limitations compared to phrase-based models: 1) Limited hypothesis space; 2) No lexicalized reordering model. We propose an extension of Hiero called PhrasalHiero to address Hiero’s second problem. Phrasal-Hiero still has the same hypothesis space as the original Hiero but incorporates a phrase-based distance cost feature and lexicalized reodering features into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009